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Description

The TMS320C54x Instruction Set Simulator, available within the Code Composer Studio for TMS320C5000
IDE, simulates the instruction set of many members of the C54x family of devices. Table 1 lists the processors
supported, with the corresponding configuration to be selected under the Import Configuration menu of Code
Composer Studio Setup. The default configuration at installation is the C55x simulator. Subsequently, Code
Composer Studio IDE will start up with the last configuration selected in Code Composer Studio Setup.

Table 1. Processors Supported by the C54x Simulator

†Functionally equivalent to the C545 Simulator.

PROCESSOR CODE COMPOSER STUIO IDE IMPORT CONFIGURATION

TMS320C541 C541 Device Simulator

TMS320C542 C542 Device Simulator

TMS320C543 C543 Device Simulator

TMS320C545 C545 Device Simulator

TMS320C545LP C545lp Device Simulator†

TMS320C546 C546 Device Simulator

TMS320C548 C548 Device Simulator

TMS320C549 C549 Device Simulator

TMS320C5401 C5401 Device Simulator

TMS320C5402 C5402 Device Simulator

TMS320C5403 C5403 Device Simulator

TMS320C5404 C5404 Device Simulator

TMS320C5406 C5406 Device Simulator

TMS320C5407 C5407 Device Simulator

TMS320C5409 C5409 Device Simulator

TMS320C5410 C5410 Device Simulator

TMS320C5416 C5416 Device Simulator

TMS320C5420 C5420 Device Simulator

All trademarks are the property of their respective owners.
Code Composer Studio, TMS320C5000, TMS320C54x, C54x, C55x, RTDX, and DSP/BIOS are trademarks of Texas Instruments.

● Included in Code Composer Studio  IDE for
TMS320C5000

● TMS320C54x CPU Full Instruction Set
Architecture Execution
– Support of All Instructions for Devices With

Extended Program Pages
– Parallel Instruction Execution
– Provision for Warning in Case of Possible In-

consistency Due to Pipeline Latency of
Some Combinations of Instructions

● Configurable Memory Simulation

● Accurate Cycle Simulation
– On-Chip Memory Blocks
– External Memory Blocks

– Support for Enhanced External Parallel
Interface (XIO2) on C5410, C5403, C5404,
C5406 and C5407

● Port Connect
– Supports External Peripherals in I/O Page
– Attachment of Files to MMRs, On-chip and

External Memory Locations to Read and
Write When Those Locations are Accessed

● Pin Connect
– Supports External Event Simulation

● Supports Simulator Analysis Events

● RTDX Support
– Host-Target and Target-Host

Communication
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Considerations for Choosing a Simulator

Although simulators for other DSP platforms and families (e.g. C6000, C55x) have different types of configu-
rations (functional, cycle-accurate, etc.) which provide tradeoff between the functionality modeled, cycle accu-
racy of the simulation, and performance, simulators for the C54x family are of only one type. All C54x simulator
configurations are cycle-accurate. The differences among the configurations are due to the differences in the
actual hardware of the devices (DSPs) in TMS320C54x family. For example, the configuration "C5402 Device
Simulator" is used to simulate the TMS320C5402 processor. The device simulator configurations model most
of the peripherals of the devices. The peripherals modeled are cycle-accurate, as in the silicon. These simulators
can be used to get an indication of the cycle behavior of the application. The details of the memory and
peripherals modeled in different configurations are discussed later in this document.

Although there are many DSP processors in the C54x family, only those listed in Table 1 are currently supported
in the simulator. But, because of similarities among the processors in the C54x family, users developing code
for an unsupported processor can select the configuration most similar in terms of the CPU and on-chip
peripherals. Table 2 shows the configuration that should be selected for use with some of the unsupported
devices.

Table 2. Configurations for Use With Unsupported C54x Devices

UNSUPPORTED HARDWARE
DEVICE (PROCESSOR)

NEAREST SIMULATOR CONFIGURATION

TMS320C5409A C5409 Device Simulator

TMS320C5410A C5410 Device Simulator

TMS320C5421 C5420 Device Simulator

TMS320C5440 C5420 Device Simulator

TMS320C5441 C5420 Device Simulator
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Supported Hardware Resources

CPU

The C54x CPU core simulated is the same for all the supported devices. It includes simulation of the full
instruction set architecture, including FAR and IDLE instructions. Pipeline latency warning messages are dis-
played if the pipeline latency feature is enabled through the Board Properties section of Code Composer Studio
Setup. For more information on pipeline latencies, see the TMS320C54x DSP CPU and Peripherals Reference
Guide, Volume 1 (literature number SPRU131)

Memory

The simulator provides configurable memory simulation. For each device, the simulator provides all on-chip
memory blocks of that device. It also, by default, provides external memory blocks in data space, program
space for devices without extended program pages, and up to the first program page that does not have any
on-chip program memory for devices with extended program pages. By default, the simulator does not provide
external memory in I/O space, however, the rest of the external memory blocks in program and I/O space can
be simulated by adding memory blocks using the "Memory Map Add" feature or by changing the appropriate
config (.cfg) file.

The simulator provides cycle accurate simulation for both on-chip and external memory blocks. For example,
if there are two simultaneous accesses (PB access and DB access) to the same on-chip memory block, the
simulator will take no extra cycle if the memory block is dual access memory, but will take one extra cycle if the
memory is single access memory. For external memory, the simulator provides wait-state support (required for
slow external memory interface) according to the number of wait-states being set by the SWWSR, SWCR, and
BSCR registers. The simulator also supports XIO2 as applicable to some of the devices.

Peripherals

Table 3 shows the on-chip peripherals supported under each simulator configuration.For more information on
these peripherals, see the TMS320C54x DSP CPU and Peripherals Reference Guide, Volume 1 (literature
number SPRU131) and the TMS320C54x DSP Enhanced Peripherals Reference Guide, Volume 5 (literature
number SPRU302). Please refer to the section of this document entitled Detailed Capabilities of Individual
Configurations, starting on page 12, for more details on the peripherals under different configurations.

Table 3. On-Chip Peripherals Supported by the C54x Simulator

SIMULATOR
CONFIGURATION

PERIPHERALS SUPPORTED

TIMERS SERIAL PORTS DMA CONTROLLER HPI FIFO

C541 Timer0 SP0 SP1 – – – –

C542 Timer0 BSP0 TDM – – HPI –

C543 Timer0 BSP0 TDM – – – –

C545 Timer0 BSP0 SP1 – – HPI –

C546 Timer0 BSP0 SP1 – – – –

C548 Timer0 BSP0 TDM BSP1 – HPI –

C549 Timer0 BSP0 TDM BSP1 – – –

C5401 Timer0 McBSP0 McBSP1 – XDMA HPI8 –

C5402 Timer0 Timer1 McBSP0 McBSP1 – XDMA HPI8 –

C5403 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5404 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5406 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5407 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5409 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5410 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI8 –

C5416 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI16 –

C5420 Timer0 McBSP0 McBSP1 McBSP2 XDMA HPI16 FIFO
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Supported Simulation Features

External Event & Data Simulation

The simulators simulate the hardware inside a particular DSP device, whereas in real hardware DSP interacts
with many other external entities. The interactions between the simulator and these external entities fall into
the following two categories:

● Control Signals – These signals trigger activities to the simulator (e.g. interrupts, serial port clocks, serial
port synchronization events, etc.)

● Data Values – These are part of an interaction between the simulator and an external entity (e.g. read and
write to peripheral registers as a part of I/O memory, serial port data, etc.)

For example, in an audio device the serial port of the DSP is connected to A/D and D/A converters or to a
codec. The interaction between the DSP and the audio device happens through transfer of a synchronization
signal to start a sample, as well as the sample data itself. Here the synchronization signal falls into the Control
Signals category and the sample data falls in Data Values category.

The simulator provides two features – namely Pin Connect and Port Connect – for the simulation of these
two types of interactions, respectively.

Pin Connect

The Pin Connect tool allows the user to simulate events from the external world.

Generally, control signals from the external entities to the simulator are of most interest to the user. Pin connect
provides a generic way to simulate the control signals from the external entities to the simulator. In these cases,
only the control signals and the time at which the signal must be triggered are important. The simulator provides
the user with a list of pins corresponding to different control signals. The user must specify all the clock values
at which events are to be triggered on this pin using a special format in a file. The list of pins and file format is
discussed later in this document. The user must then connect this file to the pin using the command window,
GEL commands, or the Pin Connect plug-in.

The C54x simulator provides the Pin Connect feature for all processor configurations. The pins supported for
different processor configurations are shown in Table 4.
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Table 4. Pins Supported by the Pin Connect Feature of theC54x Simulator

† BIO (WAVEFORM TYPE)
‡ In the case of serial ports, the CLKX pin functionality is combined with the functionality of the corresponding FSX pin, and only one logical pin

– FSX – is provided. The same is true of the CLKR pin. In the pin-connect file of these FSX and FSR pins, information regarding CLKX (or
CLKR), such as the clock ratio with respect to CLOCKOUT, is provided in addition to the information regarding external frame synchronization
events.

The pin connect file can have one or more statements of the following formats for the different types of pins
supported:

(Notational Conventions: For the following examples, variables are shown in italics, key words or symbols are
shown in bold , square brackets ([and]) identify an optional parameter, braces ({and}) identify a set, and "|"
represents a logical or.)

Pulse Type

clock-cycle [ rpt { n | EOS } ]

The clock-cycle parameter represents the CPU clock cycle in which interrupt should occur. The clock value
can be specified in decimal format or in hexadecimal format (using 0x or 0X prefix format or h or H suffix
format).

There can be two types of CPU clock cycles:

Absolute . To use an absolute clock cycle, clock-cycle value must represent the actual CPU clock cycle
in which interrupt should occur.

For example:

      12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock Cycles.

 CON-
FIG

PINS SUPPORTED

INTERRUPTS
(PULSE TYPE)

BIO† SERIAL PORT RELATED PINS

(PULSE W/ CLOCK RATIO SPECIFIED) ‡
HPI
PIN

C541

INT0 INT1 INT2 INT3 BIO

FSR0 FSX0 FSR1 FSX1 -

C542 BFSR BFSX TFSR TFSX HPI

C543 BFSR BFSX TFSR TFSX -

C545 BFSR BFSX FSR FSX HPI

C546 BFSR BFSX FSR FSX -

C548 BFSR0 BFSX0 - TFSR TFSX - BFSR1 BFSX1 - HPI

C549 BFSR0 BFSX0 - TFSR TFSX - BFSR1 BFSX1 - -

C5401 McBFSR0 McBFSX0 - McBFSR1 McBFSX1 - McBFSR2 McBFSX2 - HPI

C5402 McBFSR0 McBFSX0 - McBFSR1 McBFSX1 - McBFSR2 McBFSX2 - HPI

C5403 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5404 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5406 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5407 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5409 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5410 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI

C5416 McBFSR0 McBFSX0 - McBFSR1 McBFSX1 - McBFSR2 McBFSX2 - HPI

C5420 McBFSR0 McBFSX0 CLKS0 McBFSR1 McBFSX1 CLKS1 McBFSR2 McBFSX2 CLKS2 HPI
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Relative . Clock cycle relative to the time at which the last event occurred can also be selected.

For example:

      12 +34 55

                 This example shows three interrupts being simulated: at the 12th, 46th (12 + 34), and 55th
CPU clock cycles. A plus sign (+) before a clock cycle adds that value to the total clock
cycles preceding it. Both relative and absolute values can be mixed in input file.

The rpt  { n | EOS } parameter is optional and represents a repetition value.

Two forms of repetition in simulating interrupts can be used:

Repeat a fixed number of times . Repeat a particular pattern a fixed number (n) of times.

For example:

                  5 (+10 +20) rpt 2

The values inside the parentheses represent the portion that is repeated. Therefore, an interrupt is
simulated at the 5th, 15th (5 + 10), 35th (15 + 20), 45th (35 + 10), and 65th (45 + 20) CPU clock
cycles. The parameter n is a positive integer value.

Repeat to the end of simulation . To repeat the same pattern throughout the simulation, the string EOS
should be added to the line.

                For example:

                  10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th, 15th (10+5), 35th (15 + 20), 40th (35 + 5), 60th (40 + 20),
65th (60 + 5), and 85th (65 + 20) CPU cycles, continuing in that pattern until the end of simulation.

Waveform Type

[clock-cycle, logic-value] [ rpt { n | EOS } ]

(The square brackets ([ ]) are required to encapsulate clock-cycle and its corresponding logic-value.)

The logic-value parameter is only for the BIO pin and this is the only difference between pulse type and
waveform type. The signal can be forced to go high or low at specified clock cycles. A value of 1 forces the
signal to go high, and a value of 0 forces the signal to go low.

For example:

    [12,1] [23,0] [45,1]

Pulse with Clock Ratio Specified Type

DIVIDE r

clock-cycle [ rpt { n | EOS } ]

Compared to pulse type, here the addition is the DIVIDE command to specify the divide-down ratio for the
device clock. The parameter r is a real number or integer specifying the ratio of the CPU clock rate to the
serial port clock rate. The divide ratio is used when the serial port is configured to use the external clock.
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When the DIVIDE command is used, it must be the first command in the file. The following example specifies
the clock ratio of the transmit clock and the clock cycles for the occurrence of TFSX pulses (if this file is
connected to the TFSX pin):

DIVIDE 5
100 +200 +100

The DIVIDE command specifies the divide-down ratio of the clock against the CPU clock. That is, the CLKX
frequency is 1/5 of the CPU clock. The second line indicates that the TFSX should go high at the 100th,
300th (100 + 200) and 400th (300 + 100) CPU cycles. The TFSX pin goes high in the 500th, 1500th, and
2000th cycles of the serial port clock.

HPI Type

clock-cycle hpi-function-specification [ rpt { n | EOS } ] :

(The colon should be used as a delimiter after every statement, as shown above.)

The hpi-function-specification parameter specifies the type of HPI operation to be performed. Table 5
 describes the different format of hpi-function-specification depending upon the type of HPI.

Table 5. hpi-function-specification  Parameter Values

For more information on how to use the Pin Connect feature from the Command window, GEL files, or the Port
Connect plug-in, please see the Code Composer Studio IDE online help file.

FORMAT HPI TYPE DESCRIPTION

CTL_READ LSB
CTL_READ MSB

HPI, HPI8
Control register read, byte is determined by MSB or LSB  as HPI/HPI8 can
handle only one byte at a time

CTL_READ HPI16 Control register read, HPI16 can handle one word at a time

CTL_WRITE data LSB
CTL_WRITE data MSB

HPI, HPI8 Control register write; data specifies the write value

CTL_WRITE data HPI16 Control register write; data specifies the write value

DATA_READ LSB ++
DATA_READ MSB ++

HPI, HPI8 Data read with HPIA increment

DATA_READ LSB
DATA_READ MSB

HPI, HPI8 Data read without HPIA increment

DATA_READ ++ HPI16 Data read with HPIA increment

DATA_READ HPI16 Data read without HPIA increment

DATA_WRITE data ++ LSB
DATA_WRITE data ++ MSB

HPI, HPI8 Data write with HPIA increment; data specifies the write value

DATA_WRITE data LSB
DATA_WRITE data MSB

HPI, HPI8 Data write without HPIA increment; data specifies the write value

DATA_WRITE data ++ HPI16 Data write with HPIA increment; data specifies the write value

DATA_WRITE data HPI16 Data write without HPIA increment; data specifies the write value

LOAD file-name
HPI, HPI8,
HPI16

Initialize HPI RAM with data from file-name

HPIA_WRITE address-as-data LSB
HPIA_WRITE address-as-data MSB

HPI, HPI8
HPIA register write, byte is determined by MSB or LSB as HPI/HPI8 can handle
only one byte at a time; address-as-data specifies the write value

HPIA_WRITE address-as-data EXB HPI8
HPIA register write, EXB specifies that this is the extended seven (16..22) bits
of address

HPIA_WRITE address-as-data HPI16
HPIA register write, HPI16 can handle one word at a time, XHPIA bit in HPIC
determines whether it is lower or extended bits
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Port Connect

The Port Connect feature allows the user to simulate data transfer between the DSP and an external entity
which is present in the real hardware.

The transfer of data between the DSP and an external entity (which sits at some particular address in the
memory space of the DSP) can happen in the following two ways:

● Data from an external entity to the DSP

● Data from the DSP to an external entity

To simulate the data transfer from an external entity to the DSP, first, all data values which will be transferred
from the external entity to the DSP are put into a file (the details of the file format are discussed later). Then
an association is made in the simulator between this file and the address at which the external entity sits. This
association is called read-mode port-connect. Whenever the simulator must read from the external entity
through the address associated, it reads from the file one word at a time. To simulate the data transfer from the
DSP to an external entity, a file is port-connected in write mode against the address of the external entity.
Whenever the simulator has to write data to that address, it writes in the file one word at a time.

In the audio example described in the Pin Connect section, although only one bit at a time of a sample transfers
through the serial line, samples can be encapsulated in words as serial port reads from the Serial Port Receive
Register (DRR) or writes in to the Serial Port Transmit Register (DXR). All the samples that are to be send to
the simulator are written in a file and this file is port-connected in read mode against the memory address
corresponding to the DRR. Whenever the serial port inside the simulator has to read one word from the DRR
as part of the receive operation, it reads the word from the file. Similarly, to get the data serial port transmits
through the serial line, a file is port-connected in write mode against the memory address corresponding to the
DXR. Whenever the serial port inside the simulator writes one word to the DXR as a part of the transmit
operation, it also writes the word in to the file.

The C54x simulator provides the Port Connect feature for all processor configurations. Although Port Connect
is primarily meant for the I/O memory and serial port registers, the same concept can be applied to program
and data memory as well. The C54x simulators support Port Connect to the following memory locations:

– All I/O memory locations

– All data and program memories, except the reserved and memory mapped register (MMR) locations

– Only the serial-port receive and transmit register locations among the MMR locations. (See the data
sheet corresponding to the particular configuration to get the address of the serial port receive and
transport registers.)

Before using this feature, make sure that the address being connected to is already mapped. This is important
in case of address in I/O and higher extended external pages, as the simulator by default does not include
those addresses in its memory map.

Port Connect File Format

The Port Connect file contains one or more lines. Each line contains less than 80 characters to represent one
data value. The data is specified in hex format without any ‘0x’ prefix or ‘h’ suffix.

The following example is a sample Port Connect file.

6666
9999
aaaa
cccc
7f7f

Notes:
● The first value is taken as (6666)16 not (6666)10.
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● If a single file is used in read mode for a range of addresses, one line (hence, one datum) is read from the
file and the file pointer is advanced to the next line for any address within the range. For example, if the
example file is used for a range 0x2000-0x2004 and the read access is made to the addresses 0x2000,
0x2001, 0x2000, 0x2000, 0x2003 (in that order) during a simulation session, the values will go to the
addresses in the order – 0x6666 to 0x2000, 0x9999 to 0x2001, 0xaaaa to 0x2000, 0xcccc to 0x2000 and
0x7f7f to 0x2003. Similarly, in write mode, when there is a write to any address in the range, one line
containing that data is written in the file.

● If a Port Connect file is used in read mode with the no-rewind attribute, for any access made to the address
after end-of-file is reached, the value 0xFFFF is read and the file pointer is kept unchanged. Otherwise the
file pointer is rewound to the beginning and then one datum is read. For example, if the example file is used
for address 0x2000 in read mode, at the time of the sixth read access to that address, the value 0xFFFF
is read if no-rewind attribute is set. Otherwise 0x6666 is read.

For information on how to use Port Connect features from the Command window, GEL files, or the Port Connect
plug-in, please see the Code Composer Studio IDE online help.

Pipeline Latency Warning

The C54x pipeline is unprotected. Because of this, an assembly programmer must be very careful in using
multiple instructions that access CPU resources at the same time (C compiler handles the issue for C program-
mers). In particular, the following sentences in the CPU and peripheral user’s guide keep programmers awake
at night:“ Some of these pipeline conflicts are resolved automatically by the C54x by delaying accesses. Other
conflicts are unprotected and must be resolved by the programmer.”

The simulator provides assistance for the detection of pipeline conflicts on the C54x. It gives warning messages
whenever pipeline conflicts occur during the execution of an application’s assembly code. Although the C54x
assembler provides similar features for the detection of pipeline conflicts, the differences between this feature
in the simulator and that provided in the assembler are as follows:

● Since the simulator does runtime analysis, it can tell when pipeline conflicts occur – as opposed to the
assembler, which must report potential pipeline conflicts at the time of assembling the code.

● The simulator can only detect pipeline conflicts in code that is actually executed in the simulator. The
assembler can report potential pipeline conflicts in all the code it processes, with the exception of code
surrounding branches. The assembler detects pipeline conflicts in straight-line code only.

● The potential pipeline conflicts detected by the assembler remains the same as long as the assembly code
does not change, but the pipeline conflicts detected by the simulator may change from execution to execution
depending on the input data, interrupts, and the dynamics of the real-time execution.

The following pipeline latencies are handled in the simulator:

● DAGEN Registers Latency
– ARx Latency
– BK Latency

● Stack Pointer Latency
– As an offset in direct addressing (CPL = 1)
– Stack operation (CPL = 0)

● TREG Latency
● PMST Latency

– OVLY/MPMC/DROM/IPTR Latency
● Status Registers (ST0/ST1) Latency

– ARP/CMPT/CPL/DP/SXM/ASM/BRAF Latency
● BRC Register Latency
● MMR Access of Accumulators Latency
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To use the pipeline latency warning feature in the simulator, the pipeline latency warning option must be enabled
during setup.

Setup steps are as follows:

1. Open Code Composer Studio Setup. Import the configuration to be used.

2. Select C54x Simulator (Texas Instruments) , under My System  in the System Configuration  pane.

3. Right-click and open the properties window.

4. Go to the Board Properties tab.

5. Select Enabled  from the list box corresponding to Display Pipeline Warnings. (See Figure 1)

6. Save this setup and start Code Composer Studio IDE.

Figure 1. Setup for Pipeline Latency Warning

Whenever the simulator detects the latency conflict within the application being run it will give a warning
message. This message will contain the register bit/field name associated with the conflict, the instruction
causing the latency conflict in an instruction pair and the program address of the causing instruction. (See
Figure 2.)
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Figure 2. Pipeline Latency Message

Simulator Analysis

The C54x analysis module gives a detailed look into events occurring in the hardware, expanding debugging
capabilities beyond software breakpoints. The analysis module examines C54x bus cycle information in real
time and reacts to this information through actions, such as data breakpoints. The simulator provides monitoring
of the following types of accesses during a debugging session on all processor configurations:
● Read access on program or data memory
● Write access on program or data memory
● Read and write access on program or data memory
● Read and/or write access for a particular data value
● Read and/or write access for a particular data pattern
● Instruction fetch on the program bus
● Data breakpoint between two instruction addresses

For more information, see the Code Composer Studio C54x Simulator Analysis plug-in online help.

RTDX

Real-Time Data Exchange (RTDX) is supported when running inside the simulator. To run RTDX inside the
simulator, the user must link applications with the RTDX Simulator Target library. All the simulator device
configurations support RTDX. RTDX support includes both host-target and target-host communication.

DSP/BIOS

All applications using the DSP/BIOS can be run on all the C54x simulators. In order to enable RTA for these
applications, the user needs to ensure that the RTDX Mode in the configuration is set to simulator. Please refer
to the Code Composer Studio online documentation on DSP/BIOS for more details on RTA and how to configure
the simulator target.
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Detailed Capabilities of Individual Configurations

Peripherals

Timer
(Timer0, Timer1)

● Timer0 is supported on all devices

● Timer1 is supported only on the C5402. It is not supported on the other devices (C5403, C5404, C5406,
and C5407), which have Timer1 on real hardware.

Serial Ports
(SP0, SP1, BSP0, BSP1, TDM, McBSP0, McBSP1, McBSP2)

● The C54x simulator supports simple serial port transmission and reception by reading data from, and writing
data to, the files associated (port-connected) with the "Data Transmit Register" and "Data Receive Register",
respectively.

● The simulator provides limited support for the simulation of the serial port control pins (frame synchronization
pins) with the help of external event simulation capability. Frame synchronization signals for receive and
transmit operations at various instants of time are fed through the files associated with the pins. (See the
Pin Connect section, starting on page 4, for file format.)

● There are differences between the C5401 and C5402 McBSPs in real hardware, but in the C54x simulator,
the McBSPs of both devices have the functionality of the C5402 McBSP real hardware.

● The McBSPs in the C5403, C5404, C5406, C5407 and C5410 simulators are equivalent to the C5410
McBSPs in real hardware.

● McBSPs in other devices are equivalent to their respective hardware.

DMA

● The DMA in the C5401 and C5402 simulators are equivalent to the C5410 DMA in real hardware.

● The DMA in the C5403, C5404, C5406, C5407 and C5410 simulators are equivalent to the C5410 DMA in
real hardware.

● In the C5416 simulator the DMA supports extended registers but does not support extended I/O and data
pages in DMA memory map.

● DMAs in other devices are equivalent to respective hardware.

FIFO
(in C5420)

● In the C5420 simulator, only one CPU subsystem is supported. One end of the FIFO is connected to DMA
and the other end is connected to host files "Rfifo.dat" and "Wfifo.dat" in the current working directory. Any
attempt to write from one DMA to another DMA through FIFO will write in to "Wfifo.dat". Conversely, any
read from another DMA through FIFO will read from "Rfifo.dat". If the user wants to read through FIFO, he
should create the file "Rfifo.dat" just before setting up the DMA. The names of these two files cannot be
changed.

Host Port Interface
(HPI, HPI8, HPI16)

This simulation is performed using two files associated with HPI. The first file specifies the value of the control
signals and the corresponding address and data values. This file is associated (pin-connected) with the pin
HPI pin. (See the Pin Connect section, starting on page 4, for file format.)
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The other file is for storing the output values. The outputs generated by the HPI simulation are stored in the
output file named "hpi.out" in the current working directory. The name of this file cannot be changed.

IDLE Behavior in the Simulator

Under all configurations, the C54x simulator provides only one kind of idle functionality for all IDLE instructions.
When the simulator is in IDLE, the following occur:

● The CPU in the simulator does not do any activity.

● All peripherals inside the simulator are given clocks and, hence, can continue their activities.

The following occurrence will bring the simulator out of IDLE:

● As a part of the activities under the IDLE mode, any one of the peripherals generates an interrupt.

● Using the Pin Connect feature, the user sends an interrupt.
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Differences Between Simulator and Silicon

Register, Memory, and Watch Window Behavior

At times the memory and watch window updates on the simulator might be delayed longer than expected, and
the register window updates might occur earlier than expected for some of the registers. The following para-
graphs give the reasons for these behaviors.

At any point of simulation, the blue arrow in the disassembly window or yellow arrow in source window corre-
spond to the instruction (or source line corresponding to the instruction) which is currently in the execute phase
of the pipeline. Suppose this instruction is INST1. If a single step is applied, the simulator executes for a few
cycles until the next instruction (for example, INST2) comes into the execute phase of the pipeline. If INST1 is
a memory write instruction with some wait states, and if the number of wait states for write is more than the
number of cycles required to step from INST1 to INST2, the write will not be reflected in the memory or watch
window immediately after the step. Only when the wait state elapses and the actual write happens will the
memory and watch window update. In silicon this problem might not arise because the step is implemented
using some special breakpoint. By the time the ISR for the special breakpoint is handled, the wait state might
have elapsed and, therefore, the memory and watch window update properly.

Register window updates may occur earlier than expected because some of the register writes happen in read
phase or some phase earlier than execute phase, causing the register window update to happen before the
instruction is executed.
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Configuring the Simulator

The simulator uses config files to provide the user the ability to configure itself. There is a default config file in
the ‘drivers’ sub-directory in the Code Composer Studio installation directory corresponding to each configu-
ration listed in Table 1. The exact path of the config file can be obtained from the Board Properties window as
shown in Figure 1. A small part of the default config file used for C549 configuration is shown below:

MODULE C54X;
CHIP C549;    //Processor Number
MODULE C549;

// Template for defining blocks of memory
// MEMORY BLOCK_NAME;
//   START  < STARTING ADDRESS >;
//   LENGTH < LENGTH OF BLOCK  >;
//   PAGE   < IO = 2, DATA = 1, PROG = 0>;
//   TYPE   < DARAM/SARAM/ROM/WOM/RAM/EXRAM >;
// END BLOCK_NAME;

MEMORY MEM0;
   START    0x0000;
   LENGTH   0x0800;
   PAGE     1;
   TYPE     DARAM;
END MEM0;
...
...

END C549;
END C54X;

Creating a Memory Map

The default config files have memory maps for all internal memories and some of the external memories.
Changes to internal memories can cause undefined behavior of the simulator. The user can only configure the
external memory of a particular configuration. For example, the current default config file for the C549 config-
uration has the external memory maps up to extended program page three. The user can add another external
program page as follows:

MEMORY MEM27;
START 0x40000;
LENGTH 0x8000;
PAGE 0;
TYPE EXRAM;

END MEM27;

MEMORY MEM28;
START 0x48000;
LENGTH 0x8000;
PAGE 0;
TYPE EXRAM;

END MEM28;
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Performance Numbers

Table 6 shows the performance numbers of the simulator for different device configurations. These numbers
were gathered on a 1.7GHz Intel Pentium 4 PC with 256MB of RAM. The application used for measurement
in all three cases is the Reed-Solomon encoding and decoding application from a standard benchmarking suite.

Table 6. Performance Numbers of the C54x Simulator

SIMULATOR
CONFIGURATION

SIMULATOR SPEED
(IN KILOCYCLES/SECOND)

C541-C546 1216

C548-C549 1012

C5410-C5420 751

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
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Related Documentation

TMS320C54x DSP CPU and Peripherals Reference Set, Volume 1 (literature number SPRU131)
describes the TMS320C54x 16-bit fixed-point general-purpose digital signal processors.
Covered are its architecture, internal register structure, data and program addressing, and
the instruction pipeline.

TMS320C54x DSP Mnemonic Instruction Set Reference Set, Volume 2  (literature number
SPRU172) describes theTMS320C54x DSP algebraic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Algebraic Instruction Set Reference Set, Volume 3  (literature number
SPRU179) describes theTMS320C54x DSP mnemonic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Enhanced Peripherals Reference Set, Volume 5 (literature number SPRU302)
describes the enhanced peripherals available on some TMS320C54x DSPs. Includes the
multi-channel buffered serial ports (McBSPs), direct memory access (DMA) controller,
interprocessor communications, and the HPI-8 and HPI-16 host port interfaces.
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IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of
all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or
process in which TI products or services are used. Information published by TI regarding third party products
or services does not constitute a license from TI to use such products or services or a warranty or endorsement
thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of that third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable
for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is
an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated
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