
© 2000 Ubicom, Inc. All rights reserved. - 1 - www.ubicom.com

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive companies.

Application Note 20
October 2000

SPI and Microwire/Plus
Virtual Peripheral Implementation

1.0 Introduction
This document outlines the hardware and software
needed to do SPI (SPI is a trademark of Motorola Semi-
conductor) with the SX communications from Ubicom
(Virtual Peripheral is a trademark of Ubicom). It also
describes the SPI bus and its implementation on the SX
device using the concept of Virtual Peripheral. The soft-
ware modules may be used with other Virtual Peripheral
modules from Ubicom and with your own application
code. 
Synchronous serial interfaces are widely used to provide
economical board-level interface between different
devices such as microcontrollers, DACs, ADCs and
other. Although there is no single standard for the syn-
chronous serial bus, there are industry accepted guide-
lines based on the two most popular implementations:
SPI and Microwire/Plus (Microwire/Plus a trademark of
National Semiconductor). SPI and Microwire/Plus are
often referred to as a “3-wire” bus. Since both standards
define only the communication lines and the clock edge,
other parameters vary for different devices. This docu-
ment describes the operation of SPI and details on how it
can be implemented on a SX by the use of SPI Virtual
Peripheral software modules.

2.0 General Description
During an SPI transfer, data is simultaneously transmit-
ted (shifted out serially) and received (shifted in serially).
All SPI transfers are started and controlled by a master
SPI device. A serial clock line synchronizes shifting and
sampling of the data on the two serial data lines. Slave
select line(s) allow individual selection of slave SPI
device(s); slave devices that are not selected do not
interfere with SPI bus activities. 
The SX SPI implementation uses 8-bit transfers, but not
all peripherals use eight bits. Some peripherals use multi-
ples of eight bits, and a few use odd word lengths. When
a peripheral uses an odd number of bits, it is usually pos-
sible to send it as multiple of eight bits, and the peripheral
will ignore the extra bits. In any case, the requirements of
each peripheral in the system must be considered.



© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

2.1 SPI Signal Lines
SPI uses a master-slave model and typically has three
signal lines: 
• Serial data input line (Sdi)
• Serial data output line (Sdo)
• Serial clock line (Sck)

Chip select signals from the master are used to address
different slaves on the bus (Figure 2-1). SPI interface
defines only the communication lines and the clock edge.
Other parameters vary for different devices. Clock fre-
quencies happen to be anywhere from a few Hz to a few
MHz.

– MASTER OUT, SLAVE IN - The MOSI line is used 
to transfer data from the master to the slave. The 
master transfers instructions as addresses and data 
to the slaves on this line. The name of the pin will de-
pend on which device is referred to; on a master this 
line is often named serial data out (Sdo) whilst it on 
a slave is referred to as serial data in (Sdi). These 
pin-names indicate that the MOSI line only transfers 
data in one direction; from the master to a slave.

– MASTER IN, SLAVE OUT - The MISO line is used 
to transfer data from the slave to the master. On a 
slave this line is often named serial data out (Sdo) 
whilst it on a master referred to as serial data in 
(Sdi). The MISO line transfers data in the opposite 
direction to the MOSI line; from a slave device to the 
master.

– SERIAL CLOCK - The Sck line is used to synchro-
nize the communication between a master and a 
slave. The Sck line is generated by the master de-
vice and thus is an input into all slave devices.

– SLAVE SELECT - The Slave Select (SS) lines are 
controlled by the master and used to select slave de-
vices. The SS line must be active prior to data trans-
actions and must stay active for the duration of the 
transaction. Each slave device requires its own SS 
input line from the master, and this line is often re-
ferred to as chip select (CS).

Figure 2-1. Master Slave System Configuration

 

SC K

M O SI

M ISO

SPI
M a ste r

M ISO   M O SI  SC K  SS

Sla ve  0

M ISO   M O SI  SC K  SS

Sla ve  1

M ISO   M O SI  SC K  SS

Sla ve  n



© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

The timing diagram of signals on these lines can be seen
in Figure 2-2.

Only one data line is shown in Figure 2-2 because the
timing is the same for the MISO and the MOSI. 

2.2 SPI Modes
There are four different modes, or ways to transmit the
data on the SPI bus, determined by the value of CPHA
and CPOL.

The four different modes are shown in Table 2-1. Please
note that there are some similarities between the four
modes; Mode 0 and 3 (00b and 11b), and mode 1 and 2
(01b and 10b) uses the same clock edge to latch data in
and out. 

The in/out in Figure 2-3 indicates which clock edge data
are clocked into and out of the device.

2.3 SPI vs. Microwire/Plus
The primary difference between SPI and Microwire/Plus
is that SPI supports data locking on both falling and rising
edges of the clock signal while the latter is always operat-
ing on the rising edge. Many IC manufacturers produce
components that are compatible with both SPI and
Microwire/Plus. 

Figure 2-2. Data/Clock Timing Diagram for a Falling Edge Mode (CPOL=0, CPHA=1)

Sc k

D a ta

SS

CPOL - The clock polarity (CPOL) determines the 
polarity of the clock (Sck) when the bus is 
idle. When CPOL is 0 the clock is idle low.

CPHA - The clock phase (CPHA) determines wheth-
er the data is clocked in or out on the first 
edge after idle. When CPHA = 0, data in are 
latched on the first clock edge, while CPHA = 
1 means that data out are latched on the first 
edge after idle.

Table 2-1.  SPI Modes Determined by the CPHA and 
the CPOL Parameters.

CPHA CPOL Description
0 0 Data out on a falling edge and in on a 

rising edge. Clock is idle low.
0 1 Data out from SPI devices on rising 

edge and in on falling edge. Clock is 
idle high.

1 0 Data out from SPI devices on rising 
edge and in on falling edge. Clock is 
idle low.

1 1 Data out from SPI devices on falling 
edge and in on rising edge. Clock is idle 
high.

Figure 2-3. Clock Edges Where Data are Latched 
in/out for the Four Different Modes

In O ut

In O ut

InO ut

InO ut

C PH A = 0
C PO L = 0

C PH A = 1
C PO L = 0

C PH A = 0
C PO L = 1

C PH A = 1
C PO L = 1



© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.0 Ubicom SPI Virtual Peripheral 
Implementation
The SX SPI Virtual Peripheral modules are implemented
so that the data bits are shifted most significant bit first.
3.1 SPI Master Virtual Peripheral (spim.src)
3.1.1  Using the SPI Master Virtual Peripheral
The requirements to be fulfilled in order to use the SPI
Master Virtual Peripheral are listed below. 
1. Obtain the latest version of spim.src.
2. Modify the pin definitions and the port assignment to 

suit your application.
3. Select the chip you want to use (i.e. SX28AC).
4. Set the phase (CPHA) and polarity (CPOL) to choose 

SPI mode. 
5. Determine the desired SPI bus speed; set the intPe-

riod and/or the repetition rate in the ISR jump table to 
get correct SPI bus speed.

6. Add your own features.
7. Download the code to the device selected, and the SPI 

Master is ready to be used.
The flowchart of the SPI Master Virtual Peripheral main
program is shown in Figure 3-1.
3.1.2  Function Description
This section describes the interface to the SPI Master
Virtual Peripheral and its demo application.
Only the spimInit, spimGetByte and the spimSendByte
routine are necessary for running the SPI Master Virtual
Peripheral. The rest of the routines are for demo pur-
pose. However, the reason why these routines are
included and described here is that they might be useful
in an implementation.
3.1.2.1  spimInit
This is the SPI-Master initialization code. Initialization
that is specific for the SPI-Master is inserted into this rou-
tine.
3.1.2.2  spimGetByte
This routine check if a received byte is available. If not, it
waits and a byte returned in the W register when receiv-
ing is done.
3.1.2.3  spimSendByte
The spimSendByte routine initiates a byte transmission
on the master. If there is already a transmission in
progress, it will wait before initiating the new transfer.

3.1.2.4  spimWriteAddr
This routine writes the address specified in spimAddress
to the SPI bus.
3.1.2.5  spimWriteBlock
Writes a block (SPIM_BLOCK_SIZE) from spimRxBank to
the SPI bus. Writing starts from the address specified in
spimAddress, and ends when the least significant bits of
spimAddress (LSB) equal SPIM_BLOCK_SIZE.
3.1.2.6  spimCheckBlock
Reads a block from EEPROM and checks with spimRx-
Bank for errors. Each time a byte error is found, spimEr-
rorByte is called.
3.1.2.7  spimErrorByte
If an error is detected on read-back, this routine can be
called to log the error as done in the spimCheckBlock
routine. The address where the last error is detected is
stored in spimLastErrAdd, the spimErrCnt is increased
each time this routine is called. This routine could easily
be expanded to log the error byte received and the byte
value expected etc.
3.1.2.8  spimCSInactive
This routine (not a part of the SPI Virtual Peripheral)
waits until read or write is done before chip-select (CS or
SS) to EEPROM is set inactive. Delay is added to ensure
a minimum CS disable time (SPIM_CS_DISABLE).
3.1.3  Flags and Variables
3.1.3.1  SPI Master Flags

3.1.3.2  Variables

spimStartEn - Tells ISR to start transmission/re-
ception and tells main that TX/RX 
is in progress.

spimRxAvailable - Indicates that received byte is 
available.

spimTxData - Byte to be transmitted
spimRxData - Byte received
spimBitCount - Counts twice the bits sent/re-

ceived. See spimTransition
spimAddress - 16 bit address for reading/writing 

on the SPI bus
spimLastErrAdd - 16 bit variable containing address 

where last error was detected dur-
ing read-back

spimErrCnt - Counts errors detected during 
read-back.



© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.1.3.3  Constants and Parameters

3.1.4  SPI Master Virtual Peripheral Description
The behavior of the SPI Master is controlled by the main
program, which calls the subroutines implemented in the
SPI Master. These access subroutines set flags and vari-
ables that are used in the ISR.
The next chapters will describe the SPI Master Virtual
Peripheral and its functionality.

3.1.4.1  SPI Master Main Program
The SPI Master main program is a simple demo program
that writes data to a slave EEPROM, reads the data back
and checks for error. See flowchart in Figure 3-1 for a
more detailed description of the main program.

SPIM_CPHA1 - Clock-phase: Uncomment this 
declaration if you want to set the 
CPHA=1  (1 = output data on first 
edge while 0 = sample data on 
first edge after idle)

SPIM_CPOL1 - Clock-polarity: Uncomment this 
declaration if you want to set 
CPOL=1 (0 = spimSck idle low, 1 
= spimSck idle high)

SPIM_TRANSITION - (Number of bits to transmit/re-
ceive) x 2. This one is set to 16 for 
byte operation.

SPIM_CS_DISABLE - Oscillator clock pulses that the CS 
pin must remain inactive (high)

SPIM_WIP - "Write in progress flag" position in 
slave status register

SPIM_READ_CMD - Read data from memory array 
command

SPIM_WRITE_CMD - Write data to memory array com-
mand

SPIM_WREN_CMD - This command enables writing to 
the slave by setting the write en-
able bit in the slave status regis-
ter.

SPIM_RDSR_CMD - Read status register command
SPIM_WRSR_CMD - Write status register command
SPIM_EPROM_SIZE Number of bytes in EEPROM to 

access.
SPIM_BLOCK_SIZE Number of bytes in each block, 

max. $10 at current implementa-
tion. See spimCheckBlock and 
spimWriteBlock.

Figure 3-1. Flowchart of SPI Main Program

Main

Select slave (CS=0)

send Write Enable
command to slave

Unselect slave (CS=1)

Send Write command to slave

Send Address

Select slave (CS=0)

Unselect slave (CS=1)

Write one page of data to slave

Read slave status register

Write in progress?

Yes

address <
EEPROM_SIZE?

Yes

Light LED1
address = $0000

Send Read command

Send Address

Select slave (CS=0)

Unselect slave (CS=1)

address <
EEPROM_SIZE?

Read and check one page
of data from slave

No

No

light LED2

No

END

Yes



© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.1.4.2  SPI Master ISR
Figure 3-2 shows the ISR routine for the SPI Master
when the CPHA is set to "1". If CPHA is set to "0", the
"Even EdgeCount?" is replaced with "Odd EdgeCount?"
in the flowchart below.

3.2 SPI Slave Virtual Peripheral (spis.src)
3.2.1  Using the SPI Slave Virtual Peripheral
The requirements to be fulfilled in order to use the SPI
Master Virtual Peripheral are listed below. 
1. Obtain the latest version of spis.src.
2. Modify the pin definitions and the port assignments to 

suit your application.
3. Select the correct chip you want to use (i.e. SX28AC). 
4. Set the phase (CPHA) and polarity (CPOL) to choose 

SPI mode. 
5. Determine the desired SPI bus speed; set the intPeriod 

and/or the repetition rate in the ISR jump table to get 
correct SPI ISR rate.

6. Add your own features.
7. Download the code to the device selected, and the SPI 

Slave is ready to be used.
3.2.2  Function Description
This section describes the key subroutines of the SPI
Slave Virtual Peripheral and its demo application. Only
the spisInit and the spisGetByte routines are neces-
sary for running the SPI Slave Virtual Peripheral. The rest
of the routines are mostly for demo purposes. However,
some of the demo subroutines can also be found useful
in an implementation.
3.2.2.1  spisInit
This is the SPI-Slave specific initialization code. Among
other things done in this routine is reading a 16-byte
demo-string from program memory (_demoString) to the
spisDataBuf RAM-bank.
3.2.2.2  spisGetByte
This routine checks if a received byte is available. If not it
waits and returns a byte in the W register when receiving
is done. 
3.2.2.3  spisWrSr
When a "write statusregister" command is sent to the
slave this routine receives the new status register content
(1 byte).
3.2.2.4  spisWrite
When a "write" command is sent to the slave this routine
receives a 16-bit address and then the data to be written
sequentially until address extends $xxxF or CS=1.
3.2.2.5  spisRead
When a "read" command is sent to the slave this routine
receives the address to read from and then clocks the
corresponding data out on the spisSdoPin.
3.2.2.6  spisWrDi
When a "write disable" command is sent to the slave this
routine resets the spisWriteEnable flag in the slave sta-
tus register.
3.2.2.7  spisRdSr
When a "read statusregister" command is sent to the
slave this routine clocks the contents of the slave status
register out on the spisSdoPin.

Figure 3-2. SPI Master ISR Routine Shown for 
CPHA=1

SPI Master ISR-Thread

Rotate TxData one left

Start enable?

No

Even EdgeCount?

YesCPHA=1

Yes

Toggle Sck

 Data out pin <- TxData(7)

EdgeCount - -

EdgeCount = 0

END SPI Master ISR

No
startEnable = 0
RxAvailable = 1

Yes

Toggle Sck

Rotate RxData one left

Data in pin -> RxData(0)

No



© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.2.2.8  spisWrEn
When a "write enable" command is sent to the slave this
routine sets the spisWriteEnable flag in the status reg-
ister.
3.2.3  Flags and Variables
3.2.3.1  SPI Slave Flag

3.2.3.2  Variables

3.2.3.3  Constants and Parameters

3.2.4  SPI Slave Virtual Peripheral Description
The behavior of the SPI Slave is controlled by the main
program, which calls the subroutines implemented in the
SPI Master. These access subroutines set flags and vari-
ables that are used in the ISR. 

spisRxAvailable - Indicates that a received byte is 
available

spisStatWPEn - "Write protect enable" bit in spis-
Status register

spisStatWEL - "Write enable" bit in spisStatus 
register

spisStatWIP - "Write in progress" bit in spis-
Status register

spisStatus - Slave status register
spisTxData - Byte to be transmitted to the 

spisTxBuf register
spisRxData - Byte received
spisBitCount - (Number of bits left to transmit/re-

ceive) x 2
spisPortPrev - Previous state of SPI-Slave port
spisTemp - Temporary storage used by SPI-

Slave ISR
spisTxBuf - Working register for buffering TX-

byte
spisAddr - 16 bit memory address
SpisDataBuf - 16 bytes reserved for EEPROM 

Demo application

SPIS_CPHA1 - Clock-phase: Uncomment this 
declaration if you want to set the 
CPHA=1 (1 = outputs data on first 
edge, while 0 = sample data on 
first edge after idle)

SPIS_CPOL1 - Clock-polarity: Uncomment this 
declaration if you want to set 
CPOL=1 (0 = spisSck idle low, 1 
= spisSck idle high)

SPIS_TRANSITION - (Number of bits to transmit/re-
ceive) x 2 

SPIS_VALID_CMD - Mask incoming command. Check 
that only the 3 LSb are used.

SPIS_RANGE - Address mask/range of slave. Set 
the used bits to zero. I.e. if only 8 
bytes is used, set the 3 LSb to ze-
ro.



© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.2.4.1  SPI Slave Main Program
The SPI Slave main program is a simple demo program
that makes the SX act as a SPI EEPROM. This SPI slave
implementation is an emulation of an EEPROM slave

with 16 bytes of memory. The flow chart in Figure 3-3
shows the functionality of the SPI Slave.

The subroutines listed in the instruction decoder above
are described in section 4.2.2. The commands sent from
the master must therefore be a valid number from 1 to 7
and should correspond with the table.

The implementation of the "Execute received command"
in Figure 3-3 is shown in the instruction decoder below:

Figure 3-3. SPI Slave Main Flowchart

SPI Slave Main

CS = 0 ?
No

Status register -> LEDs

RxAvailable ?

clear RxAvailable

No

Yes

Yes

Decode RX byte

Valid command?

No

Execute received
command

Yes

CS = 1?
No

Yes

Command name Command 
value

add pc,w N/A

jmp spisIdle ;0

Jmp spisWrSr ;1

jmp spisWrite ;2

jmp spisRead ;3

jmp spisWrDi ;4

jmp spisRdSr ;5

jmp spisWrEn ;6



© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

3.2.4.2  SPI Slave ISR
Figure 3-4 shows the ISR routine for the SPI Slave when
the CPHA is set to "1". If CPHA is set to "0", the "Even

EdgeCount? " is replaced with "Odd EdgeCount?" in the
flowchart below.

3.2.5  Important Considerations
The current implementation does not support tri-state of
the MISO line. Thus, the SX slave cannot be used in a
multiple slave setup without some minor modifications.
This can be solved by setting the MISO pin (spisSdoPin)
as input when chip select (CS) is inactive.

Figure 3-4. SPI Slave ISR Flowchart

SPI Slave ISR-Thread

EdgeCount - -

Even edgeCount?

CPHA=1

Yes

TxBuf(7) -> SdoPin

Shift TxBuf left

EdgeCount = 0

END SPI Slave ISR

NoRxAvailable = 1
EdgeCount = 16
TxData -> TxBuf

Yes

Read SPI port and
compare clock pin with

"previous state"

Changes in Sck?

Store current SPI port to
"previous state"

Yes

Shift RxData left

SdiPin -> RxData(0)

No

No



© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

4.0 Specifications / Features / 
Characterization
4.1 SPI Master Virtual Peripheral Requirements

*) The program memory usage is an approximation of the
total program memory usage when the demo is included.
Approximately 120 words is general code (template) not
specific for the SPI Virtual Peripheral modules. Additional
170 words are demo routines and main. This means that
approximately 85 words are the SPI master core.

4.2 SPI Slave Virtual Peripheral Requirements

$) The program memory usage is an approximation of
the total program memory usage when the demo is
included. Approximately 120 words is general code (tem-
plate) not specific for the SPI Virtual Peripheral. Addi-
tional 115 words are demo routines and main. This
means that approximately 90 words are the SPI slave
core.

Operational mode: Random read/write of byte or 
block.

Multithreaded: Yes 
Thread Rate: 1/4
Clock speed: 50 MHz
MIPS usage: 8 MIPS
Max cycles in each thread: 40
Bus oversampling rate: 2
Bus speed at current rate: 99,2kHz
Program Memory usage: 375*) words
RAM usage: 1 byte in bank 1,

10 bytes in bank 2,
2 bit global temp variable.

Pin usage: 4 pins (Sck, Sdo, Sdi and CS)
RTCC setting: Timer interrupt running every 

1.26us à ISR rate = 793.6kHz
Ubicom mnemonics: Yes

Operational mode: Random read/write of byte 
or block.

Multithreaded: Yes 
Thread Rate: 1/4
Clock speed: 50 MHz
MIPS usage: 12 MIPS
Max cycles in each thread: 46
Bus sampling rate: 250kHz
Bus speed at current rate: max 100kHz
Program Memory usage: 325$) words
RAM usage: 10 bytes in bank 1,

1 bit global temp variable
Pin usage 4 pins (Sck, Sdo, Sdi and 

CS)
RTCC setting: Timer interrupt running ev-

ery 1us à ISR rate = 1MHz.
Ubicom mnemonics: Yes



© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

5.0 Demo Application
The demo applications have been written to give the user
the ability to do a functional test of the SPI Virtual Perip-
eral. The master demo application is written to interface
with a SPI EEPROM. The SX slave demo is written to
interface with the SX master demo and thus it emulates
the most important features of the SPI EEPROM.
Because of memory considerations the SPI slave demo
only emulates a 16-byte memory.
The master writes a string to the slave device. After the
write process it reads back the string stored in the slave
and does a byte-by-byte check, to ensure that the write
process was successful. If any errors are found the
address of the last error and the total number of errors
are reported on screen when running the SX Key in
debug mode.
By uncommenting a line in the master source code a
faulty byte can be written to a predefined memory loca-
tion. The "watch window" in the SX Key debugger will
report the error found during read back.
The default settings on the master have been preset for
interfacing with the SX SPI slave demo. To interface with
a native SPI EEPROM some modifications have to be
made in the constant declarations in the SPI master.
Both the SX slave and the SX master demo require
uncommenting the DEMO line in the sourcecode. To run
with the SX Key debugger the sx_key line has to be
uncommented as well.
To follow this demo step by step you need an "SX28AC-
52 demoboard revision 2" and an "SX Key revision E/F "
debugger. You can run this demo on any SX28AC/52BD
system but then your setup may deviate from this
description.

5.1 Running the demo with the SX slave.
Connect the master and slave as shown in Figure 5-1.
Ensure that both the SX28AC and the SX52BD have
power (jumper JP3 SX28AC and SX52BD to VDD).
Preparing the slave on SX52BD
1. Load the spis.src into the SX 48/52 Key editor, and 

connect the debugger to the SX52BD header on the 
demo board.

2. Uncomment the DEMO line in the source file.
3. Select assembler by uncommenting the sx_key line in 

the source file.
4. Program the target (Ctrl + P). Oscillator jumpers have 

to be closed to run the SX without the debugger.
5. Remove the debugger.
Preparing the master on SX28AC
1. Load the spim.src in the SX 18/28 Key editor, and 

connect the debugger to the SX28AC header on the 
demo board.

2. Uncomment the DEMO line in the source file.
3. Select assembler by uncommenting the sx_key line in 

the source file.
4. Select target SX by uncommenting SX28AC and com-

menting the SX52BD line in the Source file.
5. Reset the slave with the reset button on the demo-

board.
6. Program the SX in debug mode (Ctrl + D) and press run 

in the "SX Key control panel". Oscillator jumpers have 
to be open to run the SX trough the debugger.



© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

The SPI master will write a new string to the SX SPI
slave and then verify the contents.

The circuit used in the demo is shown in Figure 5-1.

5.2 Running the Demo with the EEPROM.
To run the demo on the SX28AC with a 25LC160 SPI
EEPROM as a slave device follow the steps below.
1. Load the spim.src in the SX 18/28 Key editor, and 

connect the debugger to the SX28AC header on the 
demo board.

2. To run the demo, uncomment the DEMO line in the 
source file.

3. Select assembler by uncommenting the sx_key line in 
the source file.

4. Select target SX by uncommenting SX28AC and com-
menting the SX52BD line in the Source file.

5. In the code the following constants have to be changed 
to interface with the EEPROM: SPIM_EPROM_SIZE = 
$800 and SPIM_BLOCK_SIZE = $10.

6. Program the SX in debug mode (Ctrl + D) and press run 
in the "SX Key control panel". Oscillator jumpers have 
to be open to run the SX trough the debugger.

The SPI master will write a string to each page of the
EEPROM and then verify the contents. 
Other 25xx EEPROM's should work as well but the set-
tings on the master have to be changed to meet the
EEPROM specifications.
The circuit used in the demo is shown in Figure 5-2.

Figure 5-1.  SPI Master/Slave Interface

(Sd o ) RB1

(Sd i)   RB2

RB3

RB4

SX
M a ste r

M O SI

Sc k

C S

M ISO

RB1 (Sd o )

RB2 (Sd i)

RB3

RB4

SX
Sla ve

2 8
Sta tus
re g ister

LED 1
LED 2 RC (7:0)RA (1:0)

Figure 5-2. SX SPI Master Interfacing to SPI EEPROM Slave

C S   Vc c

SO   H o ld

W P    Sc k

Vss      SI

1 8

4 5

RB1

RB3

RB4

RB2

SX
M O SI

Sc k

C S

M ISO

2
LED 1
LED 2 RA (1:0)



© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

6.0 Test Description 
The SPI Virtual Peripheral are tested and verified. This
section describes the environment used during the verifi-
cation and how the test was performed. 

6.1 Environment

The binary outputs from SASM were compared and
found identical with the Parallax assembler binary out-
puts. Thus, no special tests were done on binaries gener-
ated by SASM. 
6.2 Functional Test Description
6.2.1  Master on SX28AC / 52BD Interfacing SPI 
EEPROM
The schematic of the circuit used in this test is shown in
Figure 5-2.
Interfacing SX28AC with SPI EEPROM 25LC160.
1. Load the spim.src in SX 18/28 Key editor, and con-

nect the debugger to the SX28AC header on the demo 
board.

2. Select target SX by uncommenting SX28AC and com-
menting the SX52BD line in the source file.

3. Ensure that the SX28AC are powered (jumper JP3, 
VDD - SX28AC).

4. Set SPI mode as listed in Table 6-1.
5. In the source file the following constants have to be 

changed to interface with the EEPROM: 
SPIM_EPROM_SIZE = $800 and SPIM_BLOCK_SIZE = 
$10. 

6. Uncomment the DEMO line in the source file.
7. Select assembler by uncommenting the sx_key line in 

the source file.
8. Program the SX in debug mode (Ctrl + D) and press run 

in the "SX Key control panel". Oscillator jumpers have 
to be open to run the SX trough the debugger.

The SPI master will write a string to each page of the
EEPROM and then verify the contents. 
Uncomment the call to the spimByteError routine to ver-
ify that the spimCheckBlock functions properly. 
Interfacing SX52BD with SPI EEPROM 25LC160.
1. Load the spim.src in SX 48/52 Key editor, and con-

nect the debugger to the SX52BD header on the demo 
board.

2. Ensure that the SX52BD are powered (jumper JP3, 
VDD - SX52BD).

3. Repeat steps 4-7 "Interfacing SX28AC with SPI EE-
PROM 25LC160" above.

The SPI master will write a string to each page of the
EEPROM and then verify the contents. Uncomment the
call to the spimByteError routine to verify that the spim-
CheckBlock functions properly. 
6.2.2  Master Virtual Peripheral Interfacing Slave 
Virtual Peripheral 
To verify correct operation of the SPI master and slave,
two setups where used.
Before you start you should ensure that both the SX28AC
and the SX52BD are powered (jumper JP3 SX28AC and
SX52BD to VDD). The schematic of the circuit used is
shown in Figure 5-1.
SPI Master on SX52BD and SPI Slave on SX28AC
The setup described below has been repeated for all four
SPI modes.
Preparing the slave on SX28AC.
1. Load the spis.src in the SX 18/28 Key editor, and 

connect the debugger to the SX28AC header on the 
demo board.

2. Select target SX by uncommenting SX28AC and com-
menting the SX52BD line in the Source file.

3. Set SPI mode as listed in Table 7-2.
4. Uncomment the DEMO line in the source file.
5. Select assembler by uncommenting the sx_key line in 

the source file.
6. Program the SX in debug mode (Ctrl + D). Oscillator 

jumpers have to be open to run the SX through the de-
bugger.

Preparing the master on SX52BD.
1. Load the spim.src in the SX 48/52 Key editor, and 

connect the debugger to the SX52BD header on the 
demo board. 

2. Uncomment the DEMO line in the source file.
Set SPI mode as listed in Table 7-2.
1. Select assembler by uncommenting the sx_key line in 

the source file.
2. Program the SX in debug mode (Ctrl + D). Oscillator 

jumpers have to be open to run the SX trough the de-
bugger.

Oscilloscope : Tektronix TDS 3014 (100MHz)
Demo board : Ubicom SX28AC-52 Revision 2.0
Debugger : Parallax SX key Revision E (2 units)
SPI EEPROM :  25LC160
Assemblers : Ubicom SASM version 1.45.5

: Parallax SX 18/28 Key version 1.09
: Parallax SX 48/52 Key version 1.19



© 2000 Ubicom, Inc. All rights reserved. - 14 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

First start the slave and then start the master by pressing
run in the debugger window (note that there is one
debugger window for each controller). 
The SPI master will write a string to the SX SPI slave and
verify the contents.
SPI Master on SX28AC and SPI Slave on SX52BD
Only the default mode (00) was tested for this setup.
Preparing the slave SX52BD.
1. Load the spis.src in the SX 48/52 Key editor, and 

connect the debugger to the SX52BD header on the 
demo board.

2. Uncomment the DEMO line in the source file.
3. Select assembler by uncommenting the sx_key line in 

the source file.
4. Program the SX in debug mode (Ctrl + D). Oscillator 

jumpers have to be open to run the SX through the de-
bugger.

Preparing the master on SX28AC.
1. Load the spim.src in the SX 18/28 Key editor, and 

connect the debugger to the SX28AC header on the 
demo board.

2. Select target SX by uncommenting SX28AC and com-
menting the SX52BD line in the Source file. 

3. Uncomment the DEMO line in the source file.
4. Select assembler by uncommenting the sx_key line in 

the source file.
5. Program the SX in debug mode (Ctrl + D). Oscillator 

jumpers have to be open to run the SX through the de-
bugger.

First start the slave and then start the master by pressing
run in the debugger window (please note that there is
one debugger window for each controller). 
The SPI master will write a string to the SX SPI slave and
verify the contents.

6.3 Test Results
The criteria for a successful test are that data is both writ-
ten and read back from the EEPROM without errors.
6.3.1  Master on SX28AC / 52BD Interfacing SPI 
EEPROM
Table 6-1, test results for SPI master interfacing SPI
EEPROM

To ensure that the spimCheckBlock routine worked, the
spimByteError was uncommented. In the watch window
the following values were obtained:
spimErrCnt = 1
spimLastErrAdd = $0007
This indicates that one incorrect byte was read back from
address $0007 and verifies correct operation of the
spimCheckBlock routine.

Table 6-1.  Test Results for SPI Master Interfacing SPI 
EEPROM

Device CPHA CPOL Result
SX28AC 0 0 OK

1 1 OK
SX52BD 0 0 OK

1 1 OK



© 2000 Ubicom, Inc. All rights reserved. - 15 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

Figure 6-1 shows the start sequence for writing data to
the EEPROM. The first byte written is the
SPIM_WREN_CMD ($06) to enable writing to the device. CS

is toggled and a SPIM_WRITE_CMD ($02) followed by the
16-bit address ($0000) is sent on the MOSI line. No data
is present on the MISO line at this time.

Figure 6-2 is similar to Figure 6-1 except for the clock is
idle high (CPOL=1 and CPHA=1). This shows the similar-

ities between the 00b and the 11b mode mentioned in
section 3.2.

Figure 6-1.  Start Sequence for Mode 00 ( Signals: Sck, MOSI, MISO and CS)

Figure 6-2. Start Sequence for mode 11 ( Signals: Sck, MOSI, MISO and CS)



© 2000 Ubicom, Inc. All rights reserved. - 16 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

Figure 6-3 shows the end of a block write sequence.
After the last byte in the block is written, the master tog-
gles the CS line and starts polling the status register in
the slave. The polling of the status register is shown

between the cursors in Figure 6-3, and the data returned
on the MISO line is $03. This means that the slave is
busy with "write in progress" (the WIP bit is bit 0 and
WEL is bit 1 in the status register for the 25LC160).

Figure 6-3. End of Write Sequence and Polling Status Register (Signals: Sck, MOSI, MISO and CS)



© 2000 Ubicom, Inc. All rights reserved. - 17 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

6.3.1.1  Master Virtual Peripheral Interfacing to Slave Virtual Peripheral

*) The reason why these two modes fail is because the slave is level and not edge triggered. 

Table 6-2.  SPI Master Interface to Slave 
Master SX52BD Slave SX28AC Results

CPHA CPOL CPHA CPOL
0 0 0 0 OK
0 1 0 1 OK
1 0 1 0 OK
1 1 1 1 OK

The results below are for documentation only (nice to know).
0 0 1 1 OK
0 1 1 0 OK
1 0 0 1 Failiure*)

1 1 0 0 Failiure*)

Table 6-3.  SPI Master on SX28AC and Slave on SX52BD
Master SX28AC Slave SX52BD Results

CPHA CPOL CPHA CPOL
0 0 0 0 OK
0 1 0 1 Not tested
1 0 1 0 Not tested
1 1 1 1 Not tested



© 2000 Ubicom, Inc. All rights reserved. - 18 - www.ubicom.com

SPI and Microwire/Plus Virtual Peripheral Implementation

7.0 References
References and further readings are listed below:

Ref Title Author(s)
1 Virtual Peripheral guide v. 1.04 (Template 

for VP development
Ubicom 

2 Schematics for the SX28AC/SX52BD De-
moboard.

Ubicom 

3  25LC160 SPI EEPROM datasheet Microchip
http://www.microchip.com

4 Motorola M68HC11 Reference Manual 
(Section 8)

Motorola
http://www.motorola.com 



© 2000 Ubicom, Inc. All rights reserved. - 19 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

SPI and Microwire/Plus Virtual Peripheral Implementation

Lit #: SXL-AN20-04


